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Using a proposed generalisation of the pair distribution function for a gas of non-interacting
particles obeying fractional exclusion statistics in arbitrary dimensionality, we derive the
statistical correlations in the asymptotic limit of vanishing or low temperature. While Friedel-
like oscillations are present in nearly all non-bosonic cases at T¼ 0, they are characterised by
exponential damping at low temperature. We discuss the dependence of these features
on dimensionality and on the value of the statistical parameter �.
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Fractional statistics has been introduced to describe the fractional quantum Hall effect
in low-dimensional, correlated electron quantum liquids [1–6]. The elementary
excitations of such systems, usually dubbed anyons, can be characterised either
through the phase factor ei�� (0��� 1) picked up by the overall wave-function upon
exchange of two particles, of by the variation of size �D of the available Hilbert space
corresponding to a variation �N of the number of particles, through the ratio
g¼ ��D/�N (0� g� 1). The limiting cases �¼ 0, g¼ 0 (�¼ 1, g¼ 1) correspond to
boson (fermion) statistics, respectively. While the former characterisation, correspond-
ing to exchange fractional statistics, applies to dimensions d� 2 only, the latter
characterisation, corresponding to exclusion statistics, does not suffer from such a
restriction, and has been considered for arbitrary dimensionality. The relation between
the two definitions of fractional statistics is not completely settled, to date [7].
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In this context, it has been recently proposed that topological excitations such as

vortex rings (anyonic loops) in the three-dimensional chiral spin liquids may obey

fractional non-Abelian statistics [8]. For the sake of simplicity, and in order to avoid

confusion with the pair correlation function to be defined below, in the following we

shall use the symbol � for the statistical parameter in both contexts.
Recently, the statistical correlations of an ideal gas of particles obeying fractional

exchange statistics have been addressed, in arbitrary dimensionality, as a function of

density, temperature and statistical parameter �, partly analytically and partly

numerically, through the study of the pair correlation function g(r) [9]. This function

represents the probability of simultaneously finding two anyons at positions r and

r¼ 0, respectively. A general result, applying to all non-bosonic values of the

fractional parameter (0<�� 1), is that the pair correlation function is characterized

by Friedel-like oscillations, which become more pronounced for increasing � or density,

or for decreasing T. A somewhat related study [10] considered the two-particle kernel in

the lowest Landau level of a quantum Hall system, but now in d¼ 2 and within the

context of exchange fractional statistics.
In this Letter, we study some asymptotic properties of the pair correlation function at

zero temperature as a function of density.
In the formalism of second quantisation, the pair correlation function introduced

above can be defined as

gðrÞ ¼
h�yðrÞ�yð0Þ�ð0Þ�ðrÞi

nðrÞnð0Þ
, ð1Þ

where  y(r)[ (r)] is a creation (annihilation) quantum field operator at position r,

n(r)¼h y(r) (r)iis the single� particle probability density at position r, and h. . .i

denotes a quantum statistical average associated with the equilibrium distribution of the

identical particle assembly under analysis.
In Reference [9], we introduce a particular generalisation of the commutation

relations for the  -fields, interpolating between boson and fermion statistics for

0��� 1 and arbitrary dimensionality d. These are reminiscent of the graded

commutation relations of Greenberg [11], weakly violating conventional quantum

statistics.
In this way, the pair correlation function for a translationally system of anyons

obeying exclusion statistics can be written as

gðrÞ ¼ 1þ cosð�pÞ
h�yðrÞ�ð0Þi
�� ��2

n2ð0Þ

¼ 1þ cosð�pÞ
~nðrÞ

~nð0Þ

����
����
2

, ð2Þ

where

~nðrÞ ¼

Z
ddk

ð2pÞd
e�ik�rnðkÞ ð3Þ

is the Fourier trasform in d dimensions of the distribution function n(k) for exclusion

anyons at equilibrium. While alternative derivations of the latter have been proposed
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by Ouvry et al. [12,13], as well as viable approximations within the chemical collision

model by March et al. [14–16], in the following we shall use Wu’s definition [17]:

nðkÞ ¼
1

wð�Þ þ �
, ð4Þ

where �¼ �(k), and w(�) satisfies the functional relation:

w�ð1þ wÞ1�� ¼ �, ð5Þ

In this Letter we treat the case of an ideal gas of anyons obeying exclusion statistics, and

for their dispersion relation we assume the usual one as for a non-relativistic free particle:

�ðkÞ ¼
�h2k2

2m
: ð6Þ

At T¼ 0 and for each non� zero value of the statistical parameter � (0<�� 1), Wu’s

distribution function Equation (4) becomes a step function, as in Fermi statistics.

In particular, it assumes the following limiting form:

nð�Þ ¼
1=�, � � �f, �,

0, ��f, �:

�
ð7Þ

where �f,� is a generalised Fermi energy, that can be defined in arbitrary dimension as

the highest level occupied by N particles at T¼ 0. It is appropriate at this point to

remind that under the same conditions in the bosonic case (�¼ 0) the distribution

function behaves like a Dirac delta function, n(�)¼N�(�).
Therefore, inserting Equation (7) into Equation (3) allows us to derive the analytical

expression of the anyon pair correlation function in arbitrary dimension d at T¼ 0 as

gðrÞ ¼ 1þ cosð�pÞ�
d

2

� �
2

kf, �r

� �d

J2d=2ðkf, �rÞ, ð8Þ

where Jd/2(z) is a Bessel function of first kind of order d/2 [18]. kf,� represents the

wavevector implicitly defined by

Cd
kf, �
2p

� �d

¼ �
N

V
, ð9Þ

where Cd ¼ pd=2=�ðd=2Þ denotes the volume of the unit sphere in d dimensions. In the

fermion case (�¼ 1), �hkf,� represents the Fermi momentum.
In order to compare the cases with different values of the statistical parameter �, we

write the pair correlation function as

gðyÞ ¼ 1þ cosð�pÞ�
d

2

� �
2d

�yd
J2d=2ð�

1=dyÞ, ð10Þ
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where y¼ kf r is a dimensionless variable, with kf the Fermi wavevector, which agrees

with Equation (9) when �¼ 1. For 0<�� 1, g(y) has the same functional form of the

fermionic limit, the differences being the factor cos(��)/� and the dependence of kf,� on

the statistical parameter �.
Figure 1(a), shows the pair correlation function g(y) at T¼ 0 in d¼ 2 for �¼ 0� 1.

In the fermionic regime (1=2 < � � 1), the pair correlation function exhibits a hole

centred at y¼ 0, whose depth decreases with decreasing � until it disappears at � ¼ 1=2.
For 0�1=2 g(y) shows a hill centred at y¼ 0, whose height decreases with increasing �.
In the bosonic limit (�¼ 0), the pair correlation function g(y) is a constant, g(y)¼ 2,

which is a known result. Figure 1(b), allows us to appreciate the damped Friedel-like

oscillations of the pair correlation function for each non-zero value of the statistical

parameter �, except for the case � ¼ 1=2.

Figure 1. (a) Pair correlation function g(y) (in scaled units), Equation (10), in d¼ 2 for �¼ 0� 1 (� increases
from top to bottom). (b) The figure shows Friedel-like oscillations of the pair correlation function, which are
present in each case with � 6¼ 0; 1=2.
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Making use of Equation (8) and of the asymptotic properties of the Bessel function
J�(z), in the limit z� 1, the wave-length R of the Friedel-like oscillations in the pair
correlation function can be derived as

R ¼
2p
kf, �
¼

ffiffiffi
p
p

�� d=2ð Þ
N

V

� ��1=d
: ð11Þ

For each dimensionality d, at T¼ 0 and at fixed density N/V, the wavelength R depends

explicitly on the statistical parameter �. Indeed, R increases with decreasing �, and in
the bosonic limit (�¼ 0) the wavelength becomes infinity (R¼1).

On the basis of Equation (11), one would find a finite wavelength R also for � ¼ 1=2.
Therefore, the absence of Friedel-like oscillations in the pair correlation function
(cf. Figure 1(b), for T¼ 0, and Reference [9] for finite temperature) can only be related
to the presence of the vanishing factor cos(��) in the original definition of the pair

correlation function, Equation (1). Indeed, in this case the factor cos(��) cancels every
deviation of g(r) from unity. In other words, the absence of Friedel-like oscillations in
the pair correlation function in the so-called semionic case (� ¼ 1=2) is not a
consequence of the exclusion statistics in momentum space, but of the exchange

properties implied in our ad hoc generalisation of the commutation relations for anyons
obeying exclusion statistics [9]. Qualitatively similar results (not shown here) are
obtained in d¼ 1 and d¼ 3.

Generally, Friedel oscillations in the many-body properties of fermion assemblies
arise from the presence of a discontinuity in the Fermi distribution function at the
Fermi level. This behaviour is characteristic of Wu’s distribution function when � is

non-zero. In the literature, it is known that at low but finite temperature the Friedel
oscillations in the charge density around a screened impurity are exponentially damped
with a characteristic decay length �2 kf, where � ¼ �h

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½2p=ðmkBTÞ�

1=2
q

is the thermal
wavelength. Since at low temperature the behaviour of Wu’s distribution function for

non-zero � is equivalent to the Fermi–Dirac distribution, we find that the Friedel
oscillations are exponentially damped with a characteristic decay length �2kf,�.

Making use of these remarks, we can derive an approximate form of the pair
correlation function at finite temperature. The idea consists in weakly modifying the
function g(r), Equation (2), which is exact at T¼ 0. We multiply it by a damping factor
which has a characteristic decay length:

L ¼ �2kf, � ð12Þ

In this way the approximate correlation function can be defined as

gðrÞ ¼ 1þ exp �
r

L

� �
cosð�pÞ�

d

2

� �
2

kf, �r

� �d

J2d=2ðkf, �rÞ: ð13Þ

Analogously, at T¼ 0 we can rewrite the pair correlation function by means of a
change of variable, and we obtain

gðyÞ ¼ 1þ exp �
y

Y

� �
cosð�pÞ�

d

2

� �
2d

�yd
J2d=2ð�

1=dyÞ, ð14Þ
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where the dimensionless quantity Y acts as a characteristic decay length, and is defined

as

Y ¼ �1=d�2k2f : ð15Þ

Figure 2 shows the approximate pair correlation function in d¼ 2 for �d N/V¼ 1/15.

This value of the scaled density is still far from the classical limit, since the average

distance between two particles is comparable to the thermal wavelength. Likewise, the

approximate pair correlation function at T¼ 0 shows a hill centred at y¼ 0 when the

statistical parameter � is close to the bosonic limit, 0 � � � 1=2, and shows instead a

hole near the fermionic limit, 1=2 < � � 1.
Moroever, Figure 2 shows that the oscillations are absent only for �¼ 0 and 1=2. For

the cases which are close to the bosonic limit (0 � �1=2) the damping term extinguishes

Figure 2. (a) Approximate pair correlation function g(y) (in scaled units), Equation (10), in d¼ 2 and with
�dN/V¼ 1/15, for 0<��1 (� increases from top to bottom). (b) Showing Friedel-like oscillations in g(y).
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completely the Friedel-like oscillations. On the other hand, for the cases which are close
to the fermionic limit (1=2 < � � 1), under the same conditions, the oscillations suffer

from a heavy attenuation but are still visible. It is clear from Equation (15) that under
the same conditions (i.e. temperature, density and dimensionality), the damping of the
Friedel-like oscillations depends explicitly on the parameter �. Indeed, the value of

the scaling variable Y increases with increasing �. Near the bosonic limit, the
characteristic decay length is so short that the oscillations are completely damped out,
whereas close to the fermionic limit the characteristic decay length is so large that the
first Friedel-like oscillations survive. Pictorially, we can state that the ideal anyonic

liquids losing Friedel-like oscillations in their pair correlation function at low T, are
those which have smaller volume within the generalised Fermi surface.

Summarising, following a proposed generalisation of the pair correlation function
g(r) for a gas of non-interacting anyons obeying exclusion fractional statistics in

arbitrary dimensions, we have studied the asymptotic statistical correlations between
anyons at T¼ 0 and in the limit of low temperature. We find Friedel-like oscillations in
g(r) in all quasi-fermionic cases at T¼ 0, except for the value � ¼ 1=2 of the statistical

parameter. At low temperature, such oscillations are damped exponentially, with a
characteristic decay length which increases with decreasing density and increasing
dimensionality.
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